New families of graphs whose independence polynomials have only real roots

نویسندگان

  • Patrick Bahls
  • Elizabeth Bailey
  • McCabe Olsen
چکیده

We describe an inductive means of constructing infinite families of graphs, every one of whose members G has independence polynomial I(G; x) having only real zeros. Consequently, such independence polynomials are logarithmically concave and unimodal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-2-plex polynomials

This paper offers a generalization of the independence polynomial, the co-k-plex polynomial. The resulting family of polynomials carries combinatorial information on a class of independence systems defined over the vertex set of a finite graph. Specifically, we offer a recursion formula and examples of the co-2-plex polynomial on certain graphs. In addition, we characterize the class of graphs ...

متن کامل

Graphs With Few Matching Roots

We determine all graphs whose matching polynomials have at most five distinct zeros. As a consequence, we find new families of graphs which are determined by their matching polynomials.

متن کامل

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

Chromatic Bounds on Orbital Chromatic Roots

Given a group G of automorphisms of a graph Γ, the orbital chromatic polynomial OPΓ,G(x) is the polynomial whose value at a positive integer k is the number of orbits of G on proper k-colorings of Γ. Cameron and Kayibi introduced this polynomial as a means of understanding roots of chromatic polynomials. In this light, they posed a problem asking whether the real roots of the orbital chromatic ...

متن کامل

Average independence polynomials

The independence polynomial of a graph G is the function i(G, x) = ∑k 0 ikx , where ik is the number of independent sets of vertices in G of cardinality k. We investigate here the average independence polynomial, where the average is taken over all independence polynomials of (labeled) graphs of order n. We prove that while almost every independence polynomial has a nonreal root, the average in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2014